
Jeongeun Park1, Sergi Rovira2

1 imec-COSIC, KU Leuven, Leuven, Belgium
2 WiSeCom, UPF, Barcelona, Spain

FHE.org 2023, Tokyo, Japan, 26 Mar 2023

Efficient TFHE Bootstrapping in the Multiparty Setting
Motivation

• Handling multiple users securely and efficiently for privacy preserving protocol is
important for real world applications.

• Multiparty homomorphic encryption (MPHE; a.k.a. threshold-multikey FHE)
gives the best solution for it in terms of computation and communication
complexity.

• State of the art FHE schemes such as BGV, FV and CKKS are already efficiently
extended to their MPHE version, but there is no concrete such extension of
TFHE.

• TFHE with multi-digit secret key (in the single key setting) can be naturally
adapted to the multiparty setting since the addition of secret keys produces a
valid secret key:

S = s1 + s2 + · · · + sk,

where ∥S∥∞ = k and ∥si∥∞ = 1.

Our Contribution

• We compare the bootstrapping complexity of the two existing
works [LMK+22,JP22] which construct TFHE with multi-digit secret key.

• We conclude that [JP22] is the fastest and we extend it to the MPHE version by
designing an efficient global bootstrapping key generation algorithm.

• To do this, we introduce a novel algorithm called homomorphic indicator which
outputs a unit vector where the desired element is an encryption of 1, 0 elsewhere.

• We provide our implementation result and compare the theoretical MPHE
extension of [LMK+22] to show which scheme is better in what parameter sets.

Homomorphic Indicator

Algorithm 1 Homomorphic Indicator (Hom.Indicator)

Input: {Ci}i∈[m],A
new and Aold .

Output: Aold .
for i ← 1 to k do

for j ← 1 to k do
Anew [j ] := CMUX⊠(Ci ,A

old [j ],Aold [j − 1])
end for
Anew [0] := Aold [0]⊠ (1− Ci)
for j ← 0 to k do

Aold [j ] := Anew [j ]
end for

end for

• The internal product of two RGSW ciphertexts C1 and C2 is defined as follows:

⊠ : RGSW×RGSW→ RGSW, (C1,C2) 7→ (C1 ⊡ c1, . . . ,C1 ⊡ c2ℓ).

• We instantiate a CMUX gate as follows:

CMUX⊠(C,C0,C1)← (C1 − C0)⊠ C + C0.

Global Bootstrapping Key Generation

Algorithm 2 Global bootstrapping key generation

Input: {bski}i∈[k],Anew and Aold .

Output: ˆbsk.
for t ← 0 to n − 1 do

for i ← 1 to k do
Parse Ci ,t := bski [t]

end for
A := Hom.Indicator({Ci ,t}i∈[k],Anew ,Aold)
ˆbsk[t] := [A[1], . . . ,A[k]]
Refresh Anew and Aold

end for

References

[LMK+22] Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin, J. Eom, and D.
Yoo, “Efficient FHEW Bootstrapping with Small Evaluation Keys, and Applications
to Threshold Homomorphic Encryption,” Eurocrypt 2022.

[JP22] M. Joye and P. Paillier, “Blind Rotation in Fully Homomorphic Encryption
with Extended Keys”,” CSCML 2022.

A Toy Example

Figure 1: Example for k = 4 of our bootstarpping key generation. The blue arrow shows the
direction of moving the first slot. The black arrows show that the elements in the new array comes
from the previous slots in the old array when the corresponding secret key component is 1. The red
arrow shows that the elements in the new array come from the same slots of the old array when the
corresponding secret key component is 0.

Noise Analysis and Micro Benchmarks

Table 1: Comparison in terms of the number of expensive operations such as external products
denoted by Tmult and a point-wise multiplication between two polynomials of degree N in FFT
domain, denoted by TPM used in blind rotation.

Scheme Blind Rotation
[LMK+22] (1.5n + w) · Tmult

[JP22] n · Tmult + k · n · (4 · ℓ · TPM)

• To know up to which k our MPHE approach based on [JP22] outperforms that of
[LMK+22], we can use the above table and upper bound k as follows:

k ≤ 0.5 · Tmult

4 · ℓ · TPM
=

1

2
+

(ℓ + 1)

4ℓ
· Tfft

TPM
, (1)

where Tfft denotes the time to convert a polynomial to the Fourier domain.

• To guarantee the correctness, we obtain the bound of k as follows:

k ≤
(

q

96 ·
√
ι ·
√
n · ℓ · N · g 2 · θ

)2
3

. (2)

• Our experiments show a wide range for TPM , ranging from 110 nanoseconds to
779 nanoseconds, while Tfft remains constant at an average of 7 microseconds.

• From these benchmarks, we can expect that our MPHE approach will be faster
when k ranges from 3 to 47, for N = 211 and ℓ = 3.

• For N = 215 (e.g., TFHE for large message spaces), the ratio between Tfft and
TPM will be larger and our approach will support more parties while keeping the
same level of efficiency.

Experimental Results

Table 2: Parameter sets recommended, achieving at least 110-bit security based on LWE estimator
for different number parties k . We indicate by log q and logQ the LWE and RLWE modulus,
respectively. We define ℓ = O(log q) and B = log(g) given the gadget vector g = (1, g , . . . , g ℓ−1)t.
The values in the last three columns correspond to the average of 500 NAND operations, each
performed with a freshly encrypted LWE ciphertext.

k n log q logQ B ℓ Time (seconds) Bootstrapping noise Bsk size (GB)

2 530 32 64
12 3 0.20 56.2 (24.2) 0.42
6 8 0.48 45.6 (13.6) 0.45

4 495 32 64
11 4 0.33 56.12 (24.12) 0.63
7 7 0.59 48.97 (16.97) 0.66

8 495 32 64
8 4 0.46 57.51 (57.51) 1.3
7 6 0.70 50.65 (18.65) 1.1

16 495 32 64
10 5 0.90 58.37 (26.37) 2.3
7 6 1.06 52.79 (20.79) 2.2

Acknowledgement

This work was partially supported by CyberSecurity Research Flanders under Grant
VR20192203 and by the Spanish government, co-financed by the ESF.

Contact

▶ jeongeun.park@esat.kuleuven.be

▶ sergi.rovira@upf.edu


